
TRP channels: a brief overview

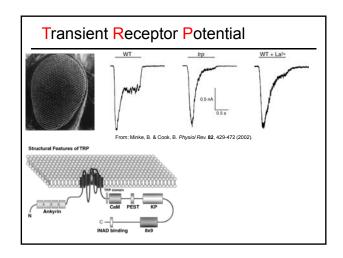
Md. Shahidul Islam, M.D., Ph.D. Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet Forskningscentrum, Södersjukhuset 118 83 Stockholm, Sweden shaisl@ki.se

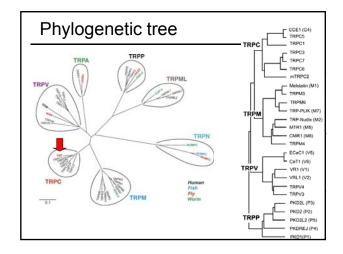
TRP Channels

... A channel class that upholds homeostasis

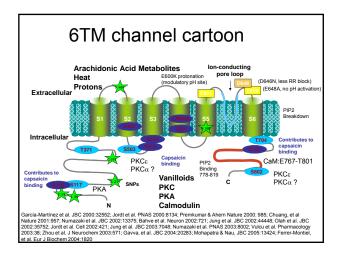
Homeostasis is the maintenance of equilibrium, or constant conditions, in a biological system by means of automatic mechanisms that counteract influences tending toward disequilibrium. The development of the concept, which is one of the most fundamental in modern biology, began in the 19th century when the French physiologist Claude BERNARD noted the constancy of chemical composition and physical properties of blood and other body fluids. He claimed that this "fixity of the milieu interieur" was essential to the life of higher organisms. The term homeostasis was coined by the 20thcentury American physiologist Walter B. Cannon, who refined and extended the concept of self-regulating mechanisms in living systems.

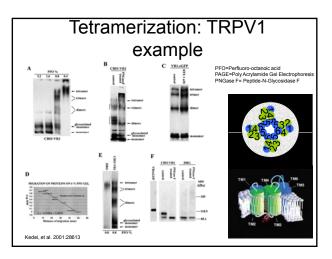
Activation of TRP channels is typically polymodal Multiple intracellular messengers (integrators) Activation and modulation overlap Biophysical stimuli Ion concentations Temperature Exogenous chemicals

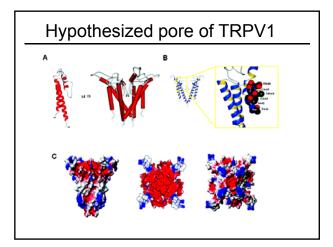

Transient Receptor Potential

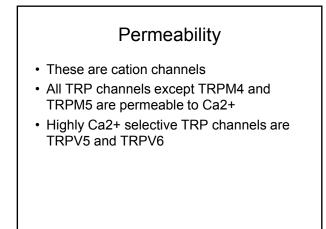

> than 30 cation channels

Cation channels

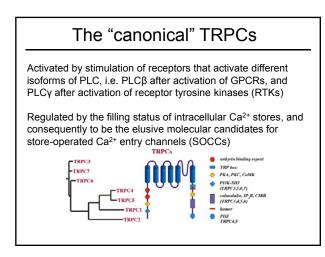

On the basis of sequence homology 7 main subfamilies: TRPC ('Canonical') TRPV ('Vanilloid')

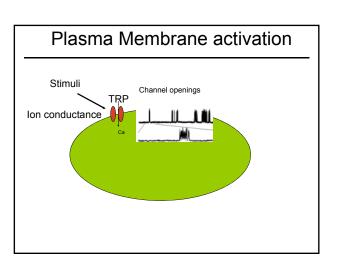

TRPM ('Melastatin') TRPP ('Polycystin') TRPML ('Mucolipin') TRPA ('Ankyrin') TRPN ('NOMPC')

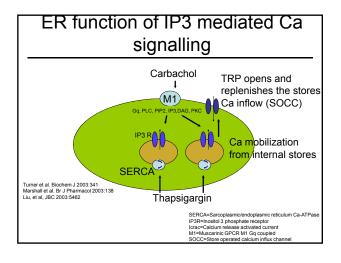


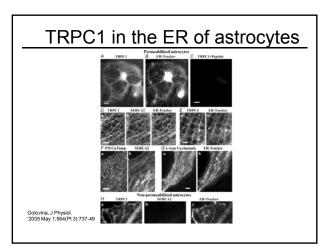


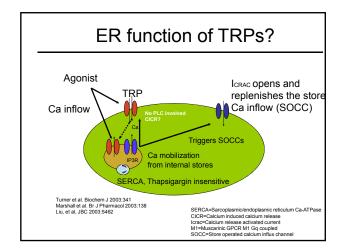
	nannel names		hannel names		hannel names		annel names
urrent	Previous other	Current	Previous other	Current	Previous other	Current ⁸	Previous other
RPC1	TRP1	TRPM1	Mlsn1	TRPV1	VR1	TRPP1	PKD1
RPC2	TRP2	TRPM2	LTRPC2	TRPV2	VRL-1	TRPP2	PKD2
RPC3	TRP3		TRPC7		GRC-1	TRPP3	PKD2L
RPC4	TRP4		TRP-Nudix	TRPV3	TRPVL3	TRPP4	PKD-REJ
	CCE1	TRPM3	LTRPM3	TRPV4	VRL-2	TRPP5	PKD2L2
RPC5	TRP5	TRPM4	LTRPC4		OTCR4		
RPC6	TRP6	TRPM5	MTR1		VR-OAC		
RPC7	TRP7	TRPM6	LTRPC6		Trp12		
			ChaK2	TRPV5	ECaC1		
		TRPM7	LTRPC7		CaT2		
			ChaK1	TRPV6			
			TRP-PLIK		ECaC2		
		TRPM8	CMR1		CaT-L		
			Trp-p8				
Birnbaum	ner et al. Cell Calc		Trp-p8		GIFL		

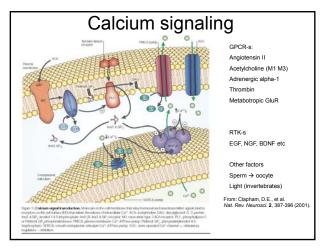


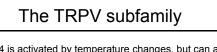

Where are they located?

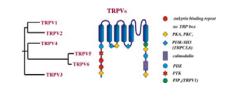

Widespread In body In animal kingdom

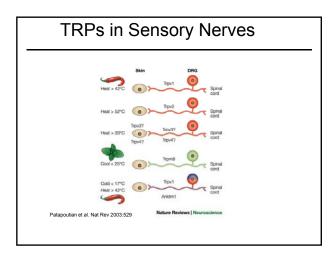

Some very localised

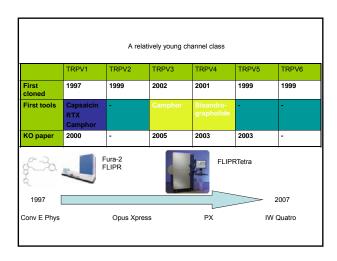

	Selectivity P _{Ca} /P _{Na}	Conductance (pS)	Proposed activation mechanisms		
TRPC1	Nonselective	16	PLC, store depletion, OAG (in the absence of extracellular Ca ²⁺ , mechanical (stretch)		
TRPC2	2.7	42	PLC, DAG, store depletion?		
TRPC3	1.6	66	PCL, DAG, OAG, src TK, IP ₃ , store depletion		
TRPC4	1.1	30-41	PLC, GTPγS, micromolar La ³⁺ , store depletion?		
TRPC5	9	64	PLC, GTPγS, receptor-operated, micromolar La ³⁺ or Gd ³⁺ , store depletion?, [Ca ²⁺] ₀ , modest elevation of [Ca ²⁺] ₁ , PIP5K, Rac, PI3K		
TRPC6	5	28-37	PLC, DAG, OAG, src TK, 20-HETE, AIF ₄ ⁻ , flufenamate		
TRPC7	2	?	PLC, DAG, OAG, 20-HETE, store depletion		

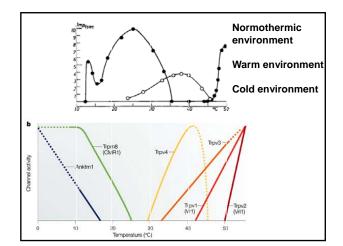


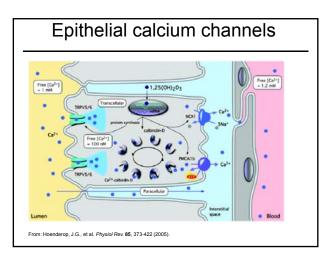


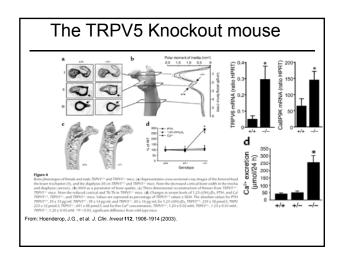


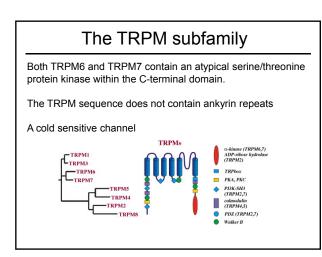

	Selectivity P _{Ca} /P _{Na}	Conductance (pS)	Proposed activation mechanisms	
TRPV1	~10	35-80	Depolarization, heat (243 °C), low pH (s5.9), vaniloids, endovaniloids, PKC, anandamide, 12-(S)-HPETE, 15-(S)- HPETE, 5-(S)-HETE, leukotriene B ₄ , 2- APB, OEA, PKA, decreased Pi(4.5)P ₂ , voltage dependent	
TRPV2	1-3	n.d.	Noxious heat (>53 °C), mechanical (stretch, swelling) growth factors, IGF-1, HA, 2-APB	
TRPV3	2.6	190	Heat (>33 °C), camphor, 2-APB, voltage dependent	
TRPV4	6	90	Moderate heat (>24 °C), cell swelling, shear stress, PKC, anandamide, 5',6'EET, 4α-PDD and other phorbols	
TRPV5	>100	75	Low [Ca ²⁺] _i , hyperpolarization, voltage dependent block by Mg ²⁺	
TRPV6	>100	40-70	Low [Ca ²⁺], hyperpolarization, voltage dependent block by Mg ²⁺	

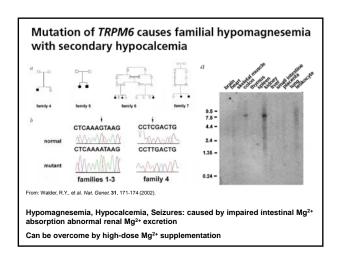


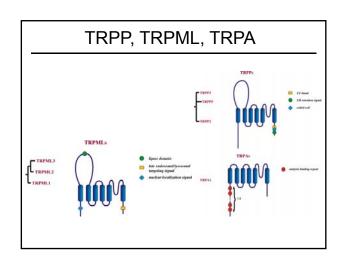

TRPV1-4 is activated by temperature changes, but can also be activated by numerous other stimuli

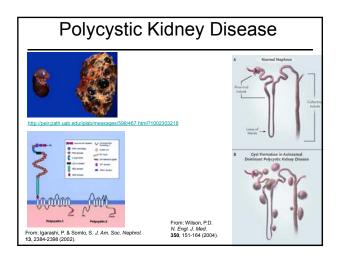

TRPV5-6 are tightly controlled by intracellular calcium



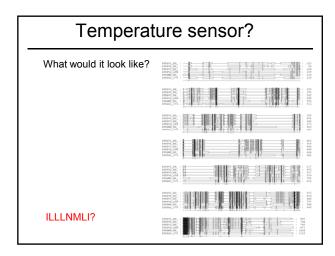


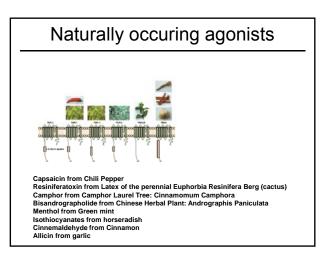





	Selectivity P _{Ca} /P _{Na}	Conductance (pS)	Proposed activation mechanisms
TRPM1	n.d.	n.d.	Translocation
TRPM2	0.5-1.6	52-80	ADP-ribose, NAD, H ₂ O ₂ and other ROS
TRPM3	1-2	65 (Ca ²⁺)-130	Cell swelling, store depletion? d- erythrosphingosine
TRPM4	none	25	Elevated [Ca2*], ATP, PKC, decavanadate, voltage dependent
TRPM5	none	16–25	Elevated [Ca2+], PI(4,5)P2, voltage dependent
TRPM6	P _{Mg} /P _{Na} ~6	n.d.	Decreased [Mg2+]
TRPM7	3	40–105	Decreased [Mg ²⁺], Mg-ATP, PI(4,5)P ₂ , cAMP, G-proteins
TRPM8	1-3	83	Cold (8–28 °C), menthol, icilin, Ca2+, pH, PI(4,5)P2, voltage dependent

TRPP, TRPML, TRPA				
TRPML1	~1	46-83	Increased [Ca2+]	
TRPML2	n.d.	n.d.	n.d.	
TRPML3	n.d.	n.d.	n.d.	
TRPP2	1-5	40-177	Mechanical stress, [Ca ²⁺]	
TRPP3	4	137	[Ca2+]	
TRPP5	1-5	300	[Ca2+]	
TRPA1	0.8-1.4	40–105	Isothiocyanates, allicin, Δ ⁹ - tetrahydrocannabinol (THC), cinnamaldehyde, bradykinin, noxious cold?, mechanical stress, voltage dependent, [Ca ²⁺]	

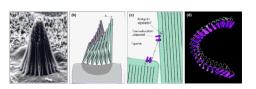

TRPN


A single member, found in C. elegans, Drosophila and zebra fish

The mammalian genome appears to lack the TRPN gene

The *Drosophila* TRPN1 was named: no mechanoreceptor potential C (NOMPC)

TRPN1 is selectively expressed in mechanosensitive cells, including ciliated mechanosensory organs in *Drosophila*, mechanosensory neurons in *C. elegans*, the hair cells of zebra fish ear. Similar to TRPA1



Mechanosensors? N =11= Various mechanisms for activation of ion channels (violet) by mechanical stimuli. (a) Direct activation by force conveyed through lipid tension. (b) Direct activation by force conveyed through structural proteins. Linking proteins might be intracellular, or extracellular, or both, and force might be parallel or normal to the membrane. (c) Indirect activation by force conveyed to a mechanically sensitive protein that does not form the channel. A second messenger carries the singend to a liceral activated downel. (d)

that does not form the channel. A second messenger carries the signal to a ligand-activated channel. (d) Various activation pathways for TRPV4. Current evidence suggests that a force sensor responding to membrane tension activates phospholipase A2 (PLA2), producing arachidonic acid (AA). AA can directly activate TRPV4 or be metabolized to 5',6'-EET by P450 epoxygenase to activate the channel. TRPV4 is also activated by temperature, probably directly directly.

TRPA1 (V4?) involved in hearing?

Mechanotransduction by vertebrate hair cells. (a) A single hair bundle from a frog vestibular Mechanotransduction by vertebrate hair cells. (a) A single hair bundle from a frog vestibular hair cell. Stereocilia heights increase uniformly towards the kinocilium. (b) Positive deflection of the hair bundle increases the distance between adjacent stereocilia tips. (c) Transduction apparatus in the stereocilia tips. The tip link, probably composed of cadherin 23, extends between adjacent membranes and is associated with one or two transduction channels at each end. The transduction channel, probably incorporating TRPA1, is elastically linked to the actin cytoskeleton. (Reproduced with permission from Sotomayor *et al.* 2005) (d) The crystal structure of a polyankyrin domain similar to that in TRPA1, in this case with 24 ankyrin repeats. Molecular dynamics modeling suggests that it is an elastic element.

Perspectives

- Multifunctional sensors of environmental cues in the form of physical and chemical stimuli
- Widely expressed in the CNS and peripheral cell types
- Involved in numerous fundamental cell functions
- An increasing number of important pathological conditions are now being linked to TRP dysfunction

TRPV1 may be involved in

- Pain
- · Irritable Bowel Syndrome
- · Diabetes Type 1

TRP dysfunction in diseases

- TRPC6: Focal segmental glomerulosclerosis
- · TRPM6: Hypomagnesemia with secondary hypocalcemia
- TRPP2: Polycystic kidney disease
- TRPML1: mucolipidosis type IV
- TRPM7: ALS-G